Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Int J Mol Sci ; 23(20)2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2071505

ABSTRACT

In this article, 34 anticoagulant drugs were screened in silico against the main protease (Mpro) of SARS-CoV-2 using molecular docking tools. Idraparinux, fondaparinux, eptifibatide, heparin, and ticagrelor demonstrated the highest binding affinities towards SARS-CoV-2 Mpro. A molecular dynamics study at 200 ns was also carried out for the most promising anticoagulants to provide insights into the dynamic and thermodynamic properties of promising compounds. Moreover, a quantum mechanical study was also conducted which helped us to attest to some of the molecular docking and dynamics findings. A biological evaluation (in vitro) of the most promising compounds was also performed by carrying out the MTT cytotoxicity assay and the crystal violet assay in order to assess inhibitory concentration 50 (IC50). It is worth noting that ticagrelor displayed the highest intrinsic potential for the inhibition of SARS-CoV-2 with an IC50 value of 5.60 µM and a safety index of 25.33. In addition, fondaparinux sodium and dabigatran showed promising inhibitory activities with IC50 values of 8.60 and 9.40 µM, respectively, and demonstrated safety indexes of 17.60 and 15.10, respectively. Moreover, the inhibitory potential of the SARS-CoV-2 Mpro enzyme was investigated by utilizing the SARS-CoV-2 Mpro assay and using tipranavir as a reference standard. Interestingly, promising SARS-CoV-2 Mpro inhibitory potential was attained for fondaparinux sodium with an IC50 value of 2.36 µM, surpassing the reference tipranavir (IC50 = 7.38 µM) by more than three-fold. Furthermore, highly eligible SARS-CoV-2 Mpro inhibitory potential was attained for dabigatran with an IC50 value of 10.59 µM. Finally, an SAR was discussed, counting on the findings of both in vitro and in silico approaches.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Molecular Docking Simulation , Coronavirus 3C Proteases , Molecular Dynamics Simulation , Fondaparinux , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Dabigatran , Ticagrelor , Eptifibatide , Gentian Violet , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/metabolism , Heparin/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
2.
Sci Rep ; 12(1): 12920, 2022 07 28.
Article in English | MEDLINE | ID: covidwho-1960505

ABSTRACT

During the current coronavirus disease 2019 (COVID-19) pandemic, symptoms of depression are commonly documented among both symptomatic and asymptomatic quarantined COVID-19 patients. Despite that many of the FDA-approved drugs have been showed anti-SARS-CoV-2 activity in vitro and remarkable efficacy against COVID-19 in clinical trials, no pharmaceutical products have yet been declared to be fully effective for treating COVID-19. Antidepressants comprise five major drug classes for the treatment of depression, neuralgia, migraine prophylaxis, and eating disorders which are frequently reported symptoms in COVID-19 patients. Herein, the efficacy of eight frequently prescribed FDA-approved antidepressants on the inhibition of both SARS-CoV-2 and MERS-CoV was assessed. Additionally, the in vitro anti-SARS-CoV-2 and anti-MERS-CoV activities were evaluated. Furthermore, molecular docking studies have been performed for these drugs against the spike (S) and main protease (Mpro) pockets of both SARS-CoV-2 and MERS-CoV. Results showed that Amitriptyline, Imipramine, Paroxetine, and Sertraline had potential anti-viral activities. Our findings suggested that the aforementioned drugs deserve more in vitro and in vivo studies targeting COVID-19 especially for those patients suffering from depression.


Subject(s)
COVID-19 Drug Treatment , Middle East Respiratory Syndrome Coronavirus , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Repositioning/methods , Humans , Molecular Docking Simulation , SARS-CoV-2
3.
Pathogens ; 11(8)2022 Jul 26.
Article in English | MEDLINE | ID: covidwho-1957410

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was first detected in Egypt in February 2020. Data about the prevalence rates of the SARS-CoV-2 lineages are relatively scarce. To understand the genetic characteristics of SARS-CoV-2 in Egypt during several waves of the pandemic, we analyzed sequences of 1256 Egyptian SARS-CoV-2 full genomes from March 2020 to May 2021. From one wave to the next, dominant strains have been observed to be replaced by other dominant strains. We detected an emerging lineage of SARS-CoV-2 in Egypt that shares mutations with the variant of concern (VOC). The neutralizing capacity of sera collected from cases infected with C.36.3 against dominant strains detected in Egypt showed a higher cross reactivity of sera with C.36.3 compared to other strains. Using in silico tools, mutations in the spike of SARS-CoV-2 induced a difference in binding affinity to the viral receptor. The C.36 lineage is the most dominant SARS-CoV-2 lineage in Egypt, and the heterotrophic antigenicity of SARS-CoV-2 variants is asymmetric. These results highlight the value of genetic and antigenic analyses of circulating strains in regions where published sequences are limited.

4.
Vaccine ; 40(32): 4303-4306, 2022 07 30.
Article in English | MEDLINE | ID: covidwho-1882607

ABSTRACT

The diversity of SARS-CoV-2 continues to lead to the emergence of new SARS-CoV-2 variants. SARS-CoV-2 antibody assays are crucial in managing the COVID-19 pandemic by determining the neutralizing antibody response. This study aims to investigate vaccine-induced antibodies against most common variants of SARS-CoV-2 in Egypt. Sera samples were collected from vaccinated participants and neutralizing activity against the SARS-CoV-2 variants was determined using microneutralization assay. Our results show that the BNT162b2 (Pfizer-BioNTech), ChAdOx1 nCov-19 (AstraZeneca), and Ad26.COV2.S COVID-19 (Janssen) vaccines elicited neutralizing antibody responses more than the BBIBP-CorV vaccine (Sinopharm) against B.1, C.36.3, and AY.32 (Delta) variants. While vaccines remain highly effective in managing the COVID-19 pandemic, ongoing monitoring of vaccine effectiveness is needed.


Subject(s)
COVID-19 , SARS-CoV-2 , Ad26COVS1 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Egypt/epidemiology , Humans , Immunity, Humoral , Pandemics
5.
Arch Virol ; 167(7): 1509-1519, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1858999

ABSTRACT

According to the Lebanese Ministry of Public Health, more than 1,053,000 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been confirmed in Lebanon so far. The actual number of cases is likely to be higher. We conducted a serological study from October 2020 to April 2021 to estimate the prevalence of SARS-CoV-2 neutralizing antibodies and identify associated factors. Serum samples as well as demographic, health, and behavioral data were collected from 2,783 subjects. Sera were tested by microneutralization assay. Neutralizing antibodies were detected in 58.9% of the study population. The positivity rate increased over the study period. It was highest among the group who remained at work during the COVID-19 pandemic and in peri-urban areas with limited adherence to preventive measures. Sex and age were associated with positivity. Reported previous COVID-19, exposure to a COVID-19 patient in the family, and attending gatherings were associated with increased prevalence. Not taking any precautionary measures against COVID-19 was a risk factor, whereas precautionary measures such as working from home and washing hands were protective. The high neutralizing antibody seroprevalence rates detected in this study emphasize the high transmission rate of SARS-CoV-2 infection in the community. Adherence to preventive measures and non-pharmaceutical interventions imposed by the government is recommended.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/epidemiology , Humans , Lebanon/epidemiology , Pandemics , Prevalence , Seroepidemiologic Studies
6.
AAPS PharmSciTech ; 23(1): 44, 2021 Dec 29.
Article in English | MEDLINE | ID: covidwho-1595653

ABSTRACT

Investigating bicelles as an oral drug delivery system and exploiting their structural benefits can pave the way to formulate hydrophobic drugs and potentiate their activity. Herein, the ability of non-ionic surfactants (labrasol®, tween 80, cremophore EL and pluronic F127) to form curcumin loaded bicelles with phosphatidylcholine, utilizing a simple method, was investigated. Molecular docking was used to understand the mechanism of bicelles formation. The % transmittance and TEM exhibited bicelles formation with labrasol® and tween 80, while cremophor EL and pluronic F127 tended to form mixed micelles. The surfactant-based nanostructures significantly improved curcumin dissolution (99.2 ± 2.6% within 10 min in case of tween 80-based bicelles) compared to liposomes and curcumin suspension in non-sink conditions. The prepared formulations improved curcumin ex vivo permeation over liposomes and drug suspension. Further, the therapeutic antiviral activity of the formulated curcumin against SARS-CoV-2 was potentiated over drug suspension. Although both Labrasol® and tween 80 bicelles could form bicelles and enhance the oral delivery of curcumin when compared to liposomes and drug suspension, the mixed micelles formulations depicted superiority than bicelles formulations. Our findings provide promising formulations that can be utilized for further preclinical and clinical studies of curcumin as an antiviral therapy for COVID-19 patients. Graphical Abstract.


Subject(s)
COVID-19 , Curcumin , Antiviral Agents , Feasibility Studies , Humans , Micelles , Molecular Docking Simulation , SARS-CoV-2 , Surface-Active Agents
7.
Bioorg Chem ; 117: 105466, 2021 12.
Article in English | MEDLINE | ID: covidwho-1499653

ABSTRACT

Series of piperidone-salicylate conjugates were synthesized through the reaction of 3E,5E-bis(arylidene)-4-piperidones with the appropriate acid chloride of acetylsalicylate in the presence of triethylamine. All the synthesized conjugates reveal antiproliferative properties against A431 (squamous skin) cancer cell line with potency higher than that of 5-fluorouracil. Many of the synthesized agents also exhibit promising antiproliferative properties against HCT116 (colon) cancer cell line, of which 5o and 5c are the most effective with 12.9, 9.8 folds potency compared with Sunitinib. Promising activity is also shown against MCF7 (breast) cancer cell line with 1.19, 1.12 folds relative to 5-fluorouracil. PI-flow cytometry of compound 5c supports the arrest of cell cycle at G1-phase. However, compound 5o and Sunitinib arrest the cell cycle at S-phase. The synthesized conjugates can be considered as multi-targeted tyrosine kinase inhibitors due to the promising properties against VEGFR-2 and EGFR in MCF7 and HCT116. CDOCKER studies support the EGFR inhibitory properties. Compounds 5p and 5i possessing thienylidene heterocycle are anti-SARS-CoV-2 with high therapeutic indices. Many of the synthesized agents show enhanced COX-1/2 properties than aspirin with better selectivity index towards COX-2 relative to COX-1. The possible applicability of the potent candidates discovered as antitumor and anti-SARS-CoV-2 is supported by the safe profile against normal (non-cancer, RPE1 and VERO-E6) cells.


Subject(s)
Antineoplastic Agents/chemistry , Antiviral Agents/chemistry , Aspirin/chemistry , Curcumin/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , COVID-19/pathology , COVID-19/virology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cyclooxygenase 1/chemistry , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/chemistry , Cyclooxygenase 2/metabolism , Drug Design , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Protein Binding , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism
8.
Influenza Other Respir Viruses ; 15(6): 750-756, 2021 11.
Article in English | MEDLINE | ID: covidwho-1311033

ABSTRACT

BACKGROUND: Reported laboratory-confirmed COVID-19 cases underestimate the true burden of disease as cases without laboratory confirmation, and asymptomatic and mild cases are missed by local surveillance systems. Population-based seroprevalence studies can provide better estimates of burden of disease by taking into account infections that were missed by surveillance systems. Additionally, little is known about the determinants of seroconversion in community settings. METHODS: We conducted a cross-sectional serologic survey among 888 participants in Egypt. RESULTS: Neutralizing antibodies were detected in 30% of study volunteers. Age and educational level were associated with being seropositive as people older than 70 years and people with graduate degrees had lower seroprevalence. Self-reporting cases having COVID-19-related symptoms such as fever, malaise, headache, dyspnea, dry cough, chest pain, diarrhea, and loss of taste or smell were all associated with having antibodies. Fever and loss of taste or smell were strong predictors with odds ratios of 2.1 (95% confidence interval: 1.3-3.5) and 4.5 (95% confidence interval: 2.6-7.8), respectively. CONCLUSIONS: Our results can guide COVID-19 prevention and control policies and assist in determining the immunity level in some Egyptian communities.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Cross-Sectional Studies , Egypt/epidemiology , Humans , Seroepidemiologic Studies
9.
Bioorg Chem ; 114: 105131, 2021 09.
Article in English | MEDLINE | ID: covidwho-1293593

ABSTRACT

Sets of 3-alkenyl-2-oxindoles (6,10,13) were synthesized in a facile synthetic pathway through acid dehydration (EtOH/HCl) of the corresponding 3-hydroxy-2-oxoindolines (5,9,12). Single crystal (10a,c) and powder (12a,26f) X-ray studies supported the structures. Compounds 6c and 10b are the most effective agents synthesized (about 3.4, 3.3 folds, respectively) against PaCa2 (pancreatic) cancer cell line relative to the standard reference used (Sunitinib). Additionally, compound 10b reveals antiproliferative properties against MCF7 (breast) cancer cell with IC50 close to that of Sunitinib. CAM testing reveals that compounds 6 and 10 demonstrated qualitative and quantitative decreases in blood vessel count and diameter with efficacy comparable to that of Sunitinib, supporting their anti-angiogenic properties. Kinase inhibitory properties support their multi-targeted inhibitory activities against VEGFR-2 and c-kit in similar behavior to that of Sunitinib. Cell cycle analysis studies utilizing MCF7 exhibit that compound 6b arrests the cell cycle at G1/S phase while, 10b reveals accumulation of the tested cell at S phase. Compounds 6a and 10b reveal potent antiviral properties against SARS-CoV-2 with high selectivity index relative to the standards (hydroxychloroquine, chloroquine). Safe profile of the potent synthesized agents, against normal cells (VERO-E6, RPE1), support the possible development of better hits based on the attained observations.


Subject(s)
Antineoplastic Agents/pharmacology , Antiviral Agents/chemical synthesis , Oxindoles/chemical synthesis , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacology , Cell Cycle , Cell Line, Tumor , Chick Embryo , Chlorocebus aethiops , Humans , Oxindoles/pharmacology , Vero Cells , COVID-19 Drug Treatment
10.
PLoS Pathog ; 17(3): e1009413, 2021 03.
Article in English | MEDLINE | ID: covidwho-1127804

ABSTRACT

SARS-CoV-2 virus is transmitted in closed settings to people in contact with COVID-19 patients such as healthcare workers and household contacts. However, household person-to-person transmission studies are limited. Households participating in an ongoing cohort study of influenza incidence and prevalence in rural Egypt were followed. Baseline enrollment was done from August 2015 to March 2017. The study protocol was amended in April 2020 to allow COVID-19 incidence and seroprevalence studies. A total of 290 households including 1598 participants were enrolled and followed from April to October 2020 in four study sites. When a participant showed respiratory illness symptoms, a serum sample and a nasal and an oropharyngeal swab were obtained. Swabs were tested by RT-PCR for SARS-CoV-2 infection. If positive, the subject was followed and swabs collected on days three, six, nine, and 14 after the first swab day and a serum sample obtained on day 14. All subjects residing with the index case were swabbed following the same sampling schedule. Sera were collected from cohort participants in October 2020 to assess seroprevalence. Swabs were tested by RT-PCR. Sera were tested by Microneutralization Assay to measure the neutralizing antibody titer. Incidence of COVID-19, household secondary attack rate, and seroprevalence in the cohort were determined. The incidence of COVID-19 was 6.9% and the household secondary attack rate was 89.8%. Transmission within households occurred within two-days of confirming the index case. Infections were asymptomatic or mild with symptoms resolving within 10 days. The majority developed a neutralizing antibody titer by day 14 post onset. The overall seroprevalence among cohort participants was 34.8%. These results suggest that within-household transmission is high in Egypt. Asymptomatic or mild illness is common. Most infections seroconvert and have a durable neutralizing antibody titer.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/transmission , Adolescent , Adult , COVID-19/blood , COVID-19/epidemiology , COVID-19/virology , Child , Cohort Studies , Egypt/epidemiology , Family , Female , Humans , Incidence , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Seroepidemiologic Studies , Young Adult
11.
Vaccines (Basel) ; 9(3)2021 Mar 03.
Article in English | MEDLINE | ID: covidwho-1125516

ABSTRACT

Since the emergence of SARS-CoV-2 at the end of 2019, 64 candidate vaccines are in clinical development and 173 are in the pre-clinical phase. Five types of vaccines are currently approved for emergency use in many countries (Inactivated, Sinopharm; Viral-vector, Astrazeneca, and Gamaleya Research Institute; mRNA, Moderna, and BioNTech/Pfizer). The main challenge in this pandemic was the availability to produce an effective vaccine to be distributed to the world's population in a short time. Herein, we developed a whole virus NRC-VACC-01 inactivated candidate SARS-CoV-2 vaccine and tested its safety and immunogenicity in laboratory animals. In the preclinical studies, we used four experimental animals (mice, rats, guinea pigs, and hamsters). Antibodies were detected as of week three post vaccination and continued up to week ten in the four experimental models. Safety evaluation of NRC-VACC-01 inactivated candidate vaccine in rats revealed that the vaccine was highly tolerable. By studying the effect of booster dose in the immunological profile of vaccinated mice, we observed an increase in neutralizing antibody titers after the booster shot, thus a booster dose was highly recommended after week three or four. Challenge infection of hamsters showed that the vaccinated group had lower morbidity and shedding than the control group. A phase I clinical trial will be performed to assess safety in human subjects.

12.
Front Microbiol ; 11: 596851, 2020.
Article in English | MEDLINE | ID: covidwho-983705

ABSTRACT

Using convalescent plasma as immunotherapy is an old method for treatment of infectious diseases. Several countries have recently allowed the use of such therapy for the treatment of COVID-19 patients especially those who are critically ill. A similar program is currently being tested in Egypt. Here, we tested 227 plasma samples from convalescent donors in Egypt for neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using a microneutralization (MN) assay. A third of the tested samples did not have antibody titers and 58% had titers between 1:10 and 1:80. Only 12% had titers >1:160. We also compared MN assays using different virus concentrations, plaque reduction neutralization (PRNT) assays, and a chemiluminescence assay that measures immunoglobulin G (IgG) binding to N and S proteins of SARS-CoV-2. Our results indicated that a MN assay using 100 TCID50/ml provides comparable results to PRNT and allows for high throughput testing.

13.
PLoS One ; 15(10): e0241471, 2020.
Article in English | MEDLINE | ID: covidwho-895078

ABSTRACT

Anecdotal evidence showed a negative correlation between Bacille Calmette-Guérin (BCG) vaccination and incidence of COVID-19. Incidence of the disease in children is much lower than in adults. It is hypothesized that BCG and other childhood vaccinations may provide some protection against SARS-CoV-2 infection through trained or adaptive immune responses. Here, we tested whether BCG, Pneumococcal, Rotavirus, Diphtheria, Tetanus, Pertussis, Hepatitis B, Haemophilus influenzae, Hepatitis B, Meningococcal, Measles, Mumps, and Rubella vaccines provide cross-reactive neutralizing antibodies against SARS-CoV-2 in BALB/c mice. Results indicated that none of these vaccines provided antibodies capable of neutralizing SARS-CoV-2 up to seven weeks post vaccination. We conclude that if such vaccines have any role in COVID-19 immunity, this role is not antibody-mediated.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Vaccines/immunology , Adolescent , Adult , Aged , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 , Child , Child, Preschool , Coronavirus Infections/immunology , Cross Reactions , Female , Humans , Immune Sera/immunology , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Middle Aged , Neutralization Tests , Pneumonia, Viral/immunology , SARS-CoV-2 , Vaccination , Vaccines, Inactivated/immunology , Viral Vaccines/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL